Congratulations to Mani Salarian for their recent publication
Homeostatic, Non-Canonical Role of Macrophage Elastase in Vascular Integrity

Abstract Text:

Background: Matrix metalloproteinase (MMP)-12 is highly expressed in abdominal aortic aneurysms and its elastolytic function has been implicated in the pathogenesis. This concept is challenged, however, by conflicting data. Here, we sought to revisit the role of MMP-12 in abdominal aortic aneurysm.

Methods: Apoe-/- and Mmp12-/-/Apoe-/- mice were infused with Ang II (angiotensin). Expression of neutrophil extracellular traps (NETs) markers and complement component 3 (C3) levels were evaluated by immunostaining in aortas of surviving animals. Plasma complement components were analyzed by immunoassay. The effects of a complement inhibitor, IgG-FH1-5 (factor H-immunoglobulin G), and macrophage-specific MMP-12 deficiency on adverse aortic remodeling and death from rupture in Ang II-infused mice were determined.

Results: Unexpectedly, death from aortic rupture was significantly higher in Mmp12-/-/Apoe-/- mice. This associated with more neutrophils, citrullinated histone H3 and neutrophil elastase, markers of NETs, and C3 levels in Mmp12-/- aortas. These findings were recapitulated in additional models of abdominal aortic aneurysm. MMP-12 deficiency also led to more pronounced elastic laminae degradation and reduced collagen integrity. Higher plasma C5a in Mmp12-/- mice pointed to complement overactivation. Treatment with IgG-FH1-5 decreased aortic wall NETosis and reduced adverse aortic remodeling and death from rupture in Ang II-infused Mmp12-/- mice. Finally, macrophage-specific MMP-12 deficiency recapitulated the effects of global MMP-12 deficiency on complement deposition and NETosis, as well as adverse aortic remodeling and death from rupture in Ang II-infused mice.

Conclusions: An MMP-12 deficiency/complement activation/NETosis pathway compromises aortic integrity, which predisposes to adverse vascular remodeling and abdominal aortic aneurysm rupture. Considering these new findings, the role of macrophage MMP-12 in vascular homeostasis demands re-evaluation of MMP-12 function in diverse settings.

This work was supported by Yale CCEH U54DK106857.